Fusing camera with LiDAR is a promising technique to improve the accuracy of 3D detection due to the complementary physical properties. While most existing methods focus on fusing camera features directly with raw LiDAR point clouds or shallow 3D features, it is observed that direct deep 3D feature fusion achieves inferior accuracy due to feature misalignment. The misalignment that originates from the feature aggregation across large receptive fields becomes increasingly severe for deep network stages. In this paper, we propose PathFusion to enable path-consistent LiDAR-camera deep feature fusion. PathFusion introduces a path consistency loss between shallow and deep features, which encourages the 2D backbone and its fusion path to transform 2D features in a way that is semantically aligned with the transform of the 3D backbone. We apply PathFusion to the prior-art fusion baseline, Focals Conv, and observe more than 1.2\% mAP improvements on the nuScenes test split consistently with and without testing-time augmentations. Moreover, PathFusion also improves KITTI AP3D (R11) by more than 0.6% on moderate level.
translated by 谷歌翻译
Diffusion models have emerged as a powerful tool for point cloud generation. A key component that drives the impressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of learning steps has limited its applications to many 3D real-world. To address this limitation, we propose Point Straight Flow (PSF), a model that exhibits impressive performance using one step. Our idea is based on the reformulation of the standard diffusion model, which optimizes the curvy learning trajectory into a straight path. Further, we develop a distillation strategy to shorten the straight path into one step without a performance loss, enabling applications to 3D real-world with latency constraints. We perform evaluations on multiple 3D tasks and find that our PSF performs comparably to the standard diffusion model, outperforming other efficient 3D point cloud generation methods. On real-world applications such as point cloud completion and training-free text-guided generation in a low-latency setup, PSF performs favorably.
translated by 谷歌翻译
时间一致的深度估计对于诸如增强现实之类的实时应用至关重要。虽然立体声深度估计已经接受了显着的注意,导致逐帧的改进,虽然相对较少的工作集中在跨越帧的时间一致性。实际上,基于我们的分析,当前立体声深度估计技术仍然遭受不良时间一致性。由于并发对象和摄像机运动,在动态场景中稳定深度是挑战。在在线设置中,此过程进一步加剧,因为只有过去的帧可用。在本文中,我们介绍了一种技术,在线设置中的动态场景中产生时间一致的深度估计。我们的网络增强了具有新颖运动和融合网络的当前每帧立体声网络。通过预测每个像素SE3变换,运动网络占对象和相机运动。融合网络通过用回归权重聚合当前和先前预测来提高预测的一致性。我们在各种数据集中进行广泛的实验(合成,户外,室内和医疗)。在零射泛化和域微调中,我们证明我们所提出的方法在数量和定性的时间稳定和每个帧精度方面优于竞争方法。我们的代码将在线提供。
translated by 谷歌翻译
视觉变形金刚(VITS)引起了对计算机视觉任务的卓越性能的关注。为解决单级低分辨率表示的限制,先前的工作适用于具有分层体系结构的高分辨率密集预测任务,以生成金字塔功能。然而,考虑到其分类的顺序拓扑,仍然对VITS探索多种表达学习。在这项工作中提高具有更多能力的VITS来学习语义和空间精确的多尺度表示,我们展示了高分辨率多分支架构的高分辨率多分支架构,带有视觉变压器,称为HRVIT,推动静脉前沿预测任务到新级别。我们探索异构分支设计,降低线性层中的冗余,并增加模型非线性以平衡模型性能和硬件效率。拟议的HRVIT在ADE20K上达到50.20%的Miou,83.16%Miou,用于语义细分任务,超过最先进的麻省理工学院和克斯犬,平均+1.78 miou改善,参数减少28%和21%拖鞋,展示HRVIT作为强大视力骨架的潜力。
translated by 谷歌翻译
从可穿戴设备到功能强大的智能设备,现代自动语音识别(ASR)型号在各种具有不同计算预算的边缘设备上运行。为了浏览模型准确性与模型大小的帕累托前线,研究人员陷入了通过为每个单独的边缘设备进行训练和微调模型来优化模型精度的困境,同时保持训练GPU小时可拖动。在本文中,我们提出了Omni-Sparsity DNN,其中可以修剪单个神经网络以生成针对各种模型大小的优化模型。我们为Omni-Sparsity DNN制定了培训策略,使其可以在Word-Error-rate(WER)vs模型大小的帕累托(Pareto)沿线找到模​​型,同时使培训GPU小时不超过训练一个单数模型的模型。我们使用流e2e ASR模型演示了Omni-Sparsity DNN。与单独修剪的稀疏型号相比,我们的结果在LibrisPeech上具有相似或更高准确性的培训时间和资源节省了大量节省:在测试中差2%-6.6%。
translated by 谷歌翻译
We propose a general purpose variational inference algorithm that forms a natural counterpart of gradient descent for optimization. Our method iteratively transports a set of particles to match the target distribution, by applying a form of functional gradient descent that minimizes the KL divergence. Empirical studies are performed on various real world models and datasets, on which our method is competitive with existing state-of-the-art methods. The derivation of our method is based on a new theoretical result that connects the derivative of KL divergence under smooth transforms with Stein's identity and a recently proposed kernelized Stein discrepancy, which is of independent interest.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译